Inteligencia artificial

Inteligencia artificial
IA

TOPIO, un robot Humanoide, en la Feria Internacional del Juguete de Núremberg de 2009.
Campo de aplicación Desarrollo de agentes racionales no vivos
Subárea de Ciencias de la computación
[editar datos en Wikidata]

La inteligencia artificial (IA) es un área multidisciplinaria, que a través de ciencias como las ciencias de la computación, la matemática, la lógica y la filosofía, estudia la creación y diseño de sistemas capaces de resolver problemas cotidianos por sí mismos, utilizando como paradigma la inteligencia humana.[cita requerida]

General y amplio como eso, reúne a amplios campos, los cuales tienen en común la creación de máquinas capaces de pensar. En ciencias de la computación se denomina inteligencia artificial a la capacidad de razonar de un agente no vivo.[1][2][3] John McCarthy acuñó la expresión «inteligencia artificial» en 1956, y la definió como «... la ciencia e ingenio de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes».[4]

Al igual que en la informática convencional, en la Inteligencia artificial tenemos una serie de elementos peculiares que la caracterizan y la diferencian. Para Nilsson son cuatro los pilares básicos en los que se apoya la inteligencia artificial, los cuales serán analizados a continuación.

También existen distintos tipos de percepciones y acciones, que pueden ser obtenidas y producidas, respectivamente, por sensores físicos y sensores mecánicos en máquinas, pulsos eléctricos u ópticos en computadoras, tanto como por entradas y salidas de bits de un software y su entorno software.

Varios ejemplos se encuentran en el área de control de sistemas, planificación automática, la habilidad de responder a diagnósticos y a consultas de los consumidores, reconocimiento de escritura, reconocimiento del habla y reconocimiento de patrones. Los sistemas de IA actualmente son parte de la rutina en campos como economía, medicina, ingeniería y la milicia, y se ha usado en gran variedad de aplicaciones de software, juegos de estrategia, como ajedrez de computador, y otros videojuegos.

Categorías de la inteligencia artificial

Búsqueda heurística. Podemos definir una heurística como un truco o estrategia que limita grandiosamente la búsqueda de soluciones ante grandes espacios de problemas. Por lo tanto ante un problema, nos ayuda a seleccionar las bifurcaciones, dentro de un árbol, con más posibilidades, con ello se restringe la búsqueda aunque no siempre se garantiza una solución adecuada. Todo lo que se debe tener para que una heurística sea adecuada es que nos proporcione soluciones que sean lo suficientemente buenas. Además utilizando la heurística, no será necesario replantear un problema cada vez que se afronte, ya que si lo hemos planteado anteriormente, ésta sugerirá la forma en que se ha de proceder para resolverlo.

Representación del conocimiento. La representación es una cuestión clave a la hora de encontrar soluciones a los problemas planteados, y que además éstas sean adecuadas. Si analizamos más detenidamente el término y además dentro de la Informática, y más concretamente dentro de la Inteligencia Artificial, encontramos varias definiciones, como pueden ser las siguientes: según Barr y Feigenbaum, la representación del conocimiento es una combinación de estructuras de datos y procedimientos de interpretación que, si son utilizados correctamente por un programa, éste podrá exhibir una conducta inteligente. La opinión de Fariñas y Verdejo será que la Inteligencia Artificial tiene como objetivo construir modelos computacionales que al ejecutarse resuelvan tareas con resultados similares a los obtenidos por una persona. Por ello, el tema central de esta disciplina es el estudio del conocimiento y su manejo. Y por último la opinión de Buchanan y Shortliffe apunta a que la Representación del Conocimiento en un programa de Inteligencia Artificial significa elegir una serie de convenciones para describir objetos, relaciones, y procesos en el mundo. Gran parte del esfuerzo realizado en la consecución de ordenadores inteligentes, según Rahael, ha sido caracterizado por el intento continuo de conseguir más y mejores estructuras de representación del conocimiento, junto con técnicas adecuadas para su manipulación, que permitiesen la resolución inteligente de algunos de los problemas ya planteados. Otra característica a resaltar, es la inclusión en los programas de Inteligencia artificial, aunque por separado, de los conocimientos y la unidad que controla y dirige la búsqueda de soluciones. Dada esta disposición, en estos programas se hace fácil la modificación, ampliación y actualización de los mismos.

El razonamiento que puede tener cualquier persona, ha demostrado ser una de las cosas más difíciles de modelar dentro de un ordenador. El sentido común, a menudo nos ayuda a prever multitud de hecho y fenómenos corrientes, pero como ya hemos dicho es muy complicado representarlos en un ordenador ya que los razonamientos, son casi siempre inexactos, dado que sus conclusiones y reglas en las que se basan solamente son aproximadamente verdaderas. Lenguajes, entornos y herramientas de Inteligencia Artificial En la Inteligencia Artificial, se han desarrollado diferentes lenguajes específicos para los diferentes campos de aplicación. Estos lenguajes en su mayoría cuentan con una serie de características comunes que podemos resumir de la siguiente forma: Este tipo de software ofrece una gran modularidad. Poseen gran capacidad de tomar decisiones de programación hasta el último momento, es decir cuando el programa ya está ejecutándose. Ofrecen grandes facilidades en el manejo de listas, y esto es importante, ya que las listas son la estructura más habitual usada para la representación del conocimiento en la Inteligencia Artificial. Facilitan la realización de ciertos tipos de deducción automática permitiendo también, la creación de una base de hechos, que es el lugar donde se recogen los datos iniciales del problema a resolver y también los resultados intermedios una vez obtenidos. Permite el uso simultáneo de estructuras que incorporan conocimiento declarativo y conocimiento procedimental. Tienen una marcada orientación gráfica. Además, las herramientas de Inteligencia artificial, permiten hacer un seguimiento de todos los cambios realizados a lo largo de toda la sesión Disponen herramientas capaces de desarrollar programas que son capaces de comprender otros programas y también de realizar modificaciones sobre ellos.

Stuart Russell y Peter Norvig diferencian estos tipos de la inteligencia artificial:[5]

Escuelas de pensamiento

La IA se divide en dos escuelas de pensamiento:

Inteligencia artificial convencional

Se conoce también como IA simbólico-deductiva. Está basada en el análisis formal y estadístico del comportamiento humano ante diferentes problemas:

Inteligencia artificial computacional

La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas conexionistas). El aprendizaje se realiza basándose en datos empíricos.

Historia

La inteligencia artificial, y la conciencia y los sentimientos

El concepto de IA es aún demasiado difuso. Contextualizando, y teniendo en cuenta un punto de vista científico, podríamos englobar a esta ciencia como la encargada de imitar una persona, y no su cuerpo, sino imitar al cerebro, en todas sus funciones, existentes en el humano o inventadas sobre el desarrollo de una máquina inteligente.

A veces, aplicando la definición de Inteligencia Artificial, se piensa en máquinas inteligentes y/o no conscientes de si misma, pero sin sentimientos; que «obstaculizan» encontrar la mejor solución a un problema dado. Sin embargo muchos igualmente pensamos en dispositivos artificiales capaces de concluir miles de premisas a partir de otras premisas dadas, sin que ningún tipo de emoción ni conciencia tenga la opción de obstaculizar dicha labor.

En esta línea, hay que saber que ya existen sistemas inteligentes. Capaces de tomar decisiones «acertadas».

Aunque, por el momento, la mayoría de los investigadores en el ámbito de la Inteligencia Artificial se centran sólo en el aspecto racional, muchos de ellos consideran seriamente la posibilidad de incorporar componentes «emotivos» como indicadores de estado, a fin de aumentar la eficacia de los sistemas inteligentes.

Particularmente para los robots móviles, es necesario que cuenten con algo similar a las emociones con el objeto de saber –en cada instante y como mínimo– qué hacer a continuación [Pinker, 2001, p. 481].

Al tener «sentimientos» y, al menos potencialmente, «motivaciones», podrán actuar de acuerdo con sus «intenciones» [Mazlish, 1995, p. 318]. Así, se podría equipar a un robot con dispositivos que controlen su medio interno; por ejemplo, que «sientan hambre» al detectar que su nivel de energía está descendiendo o que «sientan miedo» cuando aquel esté demasiado bajo.

Esta señal podría interrumpir los procesos de alto nivel y obligar al robot a conseguir el preciado elemento [Johnson-Laird, 1993, p. 359]. Incluso se podría introducir el «dolor» o el «sufrimiento físico», a fin de evitar las torpezas de funcionamiento como, por ejemplo, introducir la mano dentro de una cadena de engranajes o saltar desde una cierta altura, lo cual le provocaría daños irreparables.

Esto significa que los sistemas inteligentes deben ser dotados con mecanismos de retroalimentación que les permitan tener conocimiento de estados internos, igual que sucede con los humanos que disponen de propiocepción, interocepción, nocicepción, etcétera. Esto es fundamental tanto para tomar decisiones como para conservar su propia integridad y seguridad. La retroalimentación en sistemas está particularmente desarrollada en cibernética, por ejemplo en el cambio de dirección y velocidad autónomo de un misil, utilizando como parámetro la posición en cada instante en relación al objetivo que debe alcanzar. Esto debe ser diferenciado del conocimiento que un sistema o programa computacional puede tener de sus estados internos, por ejemplo la cantidad de ciclos cumplidos en un loop o bucle en sentencias tipo do... for, o la cantidad de memoria disponible para una operación determinada.

A los sistemas inteligentes el no tener en cuenta elementos emocionales les permite no olvidar la meta que deben alcanzar. En los humanos el olvido de la meta o el abandonar las metas por perturbaciones emocionales es un problema que en algunos casos llega a ser incapacitante. Los sistemas inteligentes, al combinar una memoria durable, una asignación de metas o motivación, junto a la toma de decisiones y asignación de prioridades con base en estados actuales y estados meta, logran un comportamiento en extremo eficiente, especialmente ante problemas complejos y peligrosos.

En síntesis, lo racional y lo emocional están de tal manera interrelacionados entre sí, que se podría decir que no sólo no son aspectos contradictorios sino que son –hasta cierto punto– complementarios.

Críticas

Las principales críticas a la inteligencia artificial tienen que ver con su capacidad de imitar por completo a un ser humano. Estas críticas ignoran que ningún humano individual tiene capacidad para resolver todo tipo de problemas, y autores como Howard Gardner han propuesto que existen inteligencias múltiples. Un sistema de inteligencia artificial debería resolver problemas. Por lo tanto es fundamental en su diseño la delimitación de los tipos de problemas que resolverá y las estrategias y algoritmos que utilizará para encontrar la solución.

En los humanos la capacidad de resolver problemas tiene dos aspectos: los aspectos innatos y los aspectos aprendidos. Los aspectos innatos permiten por ejemplo almacenar y recuperar información en la memoria y los aspectos aprendidos el saber resolver un problema matemático mediante el algoritmo adecuado. Del mismo modo que un humano debe disponer de herramientas que le permitan solucionar ciertos problemas, los sistemas artificiales deben ser programados de modo tal que puedan resolver ciertos problemas.

Muchas personas consideran que el test de Turing ha sido superado, citando conversaciones en que al dialogar con un programa de inteligencia artificial para chat no saben que hablan con un programa. Sin embargo, esta situación no es equivalente a un test de Turing, que requiere que el participante esté sobre aviso de la posibilidad de hablar con una máquina.

Otros experimentos mentales como la Habitación china de John Searle han mostrado cómo una máquina podría simular pensamiento sin tener que tenerlo, pasando el test de Turing sin siquiera entender lo que hace. Esto demostraría que la máquina en realidad no está pensando, ya que actuar de acuerdo con un programa preestablecido sería suficiente. Si para Turing el hecho de engañar a un ser humano que intenta evitar que le engañen es muestra de una mente inteligente, Searle considera posible lograr dicho efecto mediante reglas definidas a priori.

Uno de los mayores problemas en sistemas de inteligencia artificial es la comunicación con el usuario. Este obstáculo es debido a la ambigüedad del lenguaje, y apareció ya en los inicios de los primeros sistemas operativos informáticos. La capacidad de los humanos para comunicarse entre sí implica el conocimiento del lenguaje que utiliza el interlocutor. Para que un humano pueda comunicarse con un sistema inteligente hay dos opciones: o bien el humano aprende el lenguaje del sistema como si aprendiese a hablar cualquier otro idioma distinto al nativo, o bien el sistema tiene la capacidad de interpretar el mensaje del usuario en la lengua que el usuario utiliza.

Un humano durante toda su vida aprende el vocabulario de su lengua nativa. Un humano interpreta los mensajes a pesar de la polisemia de las palabras utilizando el contexto para resolver ambigüedades. Sin embargo, debe conocer los distintos significados para poder interpretar, y es por esto que lenguajes especializados y técnicos son conocidos solamente por expertos en las respectivas disciplinas. Un sistema de inteligencia artificial se enfrenta con el mismo problema, la polisemia del lenguaje humano, su sintaxis poco estructurada y los dialectos entre grupos.

Los desarrollos en inteligencia artificial son mayores en los campos disciplinares en los que existe mayor consenso entre especialistas. Un sistema experto es más probable de ser programado en física o en medicina que en sociología o en psicología. Esto se debe al problema del consenso entre especialistas en la definición de los conceptos involucrados y en los procedimientos y técnicas a utilizar. Por ejemplo, en física hay acuerdo sobre el concepto de velocidad y cómo calcularla. Sin embargo, en psicología se discuten los conceptos, la etiología, la psicopatología y cómo proceder ante cierto diagnóstico. Esto dificulta la creación de sistemas inteligentes porque siempre habrá desacuerdo sobre lo que se esperaría que el sistema haga. A pesar de esto hay grandes avances en el diseño de sistemas expertos para el diagnóstico y toma de decisiones en el ámbito médico y psiquiátrico (Adaraga Morales, Zaccagnini Sancho, 1994).

Tecnologías de apoyo

Aplicaciones de la inteligencia artificial

Un asistente automático en línea dando servicio de atención al cliente en un sitio web – una de las muchas aplicaciones primitivas de la inteligencia artificial.

Las técnicas desarrolladas en el campo de la inteligencia artificial son numerosas y ubicuas. Comúnmente cuando un problema es resuelto mediante inteligencia artificial la solución es incorporada en ámbitos de la industria y de la vida diaria de los usuarios de programas de computadora, pero la percepción popular se olvida de los orígenes de estas tecnologías que dejan de ser percibidas como inteligencia artificial. A este fenómeno se le conoce como el efecto IA.[12]

Investigadores en el campo de la inteligencia artificial

Véase también

Referencias

  1. http://www.csail.mit.edu/
  2. http://decsai.ugr.es/
  3. http://ai.stanford.edu/
  4. «Basic Questions». Consultado el 27 de octubre de 2011. )
  5. Stuart Russell and Peter Norvig, Inteligencia Artificial: Un Enfoque Moderno http://aima.cs.berkeley.edu/contents.html
  6. Bellman, 1978
  7. Rich y knight, 1991
  8. Winston, 1992
  9. Nilsson, 1998
  10. http://es.blog.pinggers.com/2011/02/21/watson-y-otros-sistemas-que-mejoran-nuestras-vidas-con-inteligencia-artificial/
  11. «La inteligencia artificial conquista el último tablero de los humanos». Consultado el 27 de enero de 2016.
  12. «AI set to exceed human brain power» (en inglés). CNN. 26 de julio de 2006.

Bibliografía

Enlaces externos

Wikilibros

Publicaciones

Asociaciones

Robótica

Videos

Otros

This article is issued from Wikipedia - version of the Thursday, February 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.