Memoria flash

La memoria flash —derivada de la memoria EEPROM— permite la lectura y escritura de múltiples posiciones de memoria en la misma operación. Gracias a ello, la tecnología flash, siempre mediante impulsos eléctricos, permite velocidades de funcionamiento muy superiores frente a la tecnología EEPROM primigenia, que sólo permitía actuar sobre una única celda de memoria en cada operación de programación. Se trata de la tecnología empleada en los dispositivos denominados memoria USB.

Una memoria USB: el chip de la izquierda es la memoria flash; el controlador está a la derecha.

Historia

Dispositivos de almacenamiento comunes, utilizados para transportar datos de la computdora.

La historia de la memoria flash siempre ha estado muy vinculada con el avance del resto de las tecnologías a las que presta sus servicios como routers, módems, BIOS de las PC, wireless, etcétera. En 1984, fue Fujio Masuoka quien inventó este tipo de memoria como evolución de las EEPROM existentes por aquel entonces.[1] Intel intentó atribuirse la creación de esta sin éxito, aunque sí comercializó la primera memoria flash de uso común.[cita requerida]

Entre los años 1994 y 1998, se desarrollaron los principales tipos de memoria conocidas, como la SmartMedia o la CompactFlash. La tecnología pronto planteó aplicaciones en otros campos. En 1998, la compañía Rio comercializó el primer reproductor de audio digital sin piezas móviles aprovechando el modo de funcionamiento de la memoria flash. Este producto inauguraría una nueva clase de reproductores que causarían una revolución en la industria musical llevando al escándalo Napster, el lanzamiento del iPod y el eventual reemplazo de los reproductores de cinta y CD.

En 1994, SanDisk comenzó a comercializar tarjetas de memoria (CompactFlash) basadas en estos circuitos, y desde entonces la evolución ha llegado a pequeños dispositivos de mano de la electrónica de consumo como reproductores de MP3 portátiles, tarjetas de memoria para videoconsolas y teléfonos móviles, capacidad de almacenamiento para las PC Card que permiten conectar a redes inalámbricas y un largo etcétera, incluso llegando a la aeronáutica espacial.

Generalidades

Tarjeta inteligente, tarjeta microSD y tres diferentes memorias USB.

Económicamente hablando, el precio en el mercado cumple la ley de Moore aumentando su capacidad y disminuyendo el precio.

Algunas de sus ventajas son una gran resistencia a los golpes, gran velocidad, bajo consumo de energía y un funcionamiento silencioso, ya que no contiene actuadores mecánicos ni partes móviles. Su pequeño tamaño también es un factor determinante a la hora de escoger para un dispositivo portátil, así como su ligereza y versatilidad para todos los usos hacia los que está orientado. En vista de ello, comienzan a popularizarse las unidades SSD que usan memoria flash en lugar de platos.

Sin embargo, todos los tipos de memoria flash sólo permiten un número limitado de escrituras y borrados, generalmente entre 10.000 y un millón, dependiendo de la celda, de la precisión del proceso de fabricación y del voltaje necesario para su borrado. Además su relación costo capacidad es menos favorable respecto a otros medios como los discos ópticos y los discos duros.

Este tipo de memoria está fabricado con puertas lógicas NOR y NAND para almacenar los 0s ó 1s correspondientes. Actualmente (08-08-2005) hay una gran división entre los fabricantes de un tipo u otro, especialmente a la hora de elegir un sistema de ficheros para estas memorias. Sin embargo se comienzan a desarrollar memorias basadas en ORNAND.

Los sistemas de ficheros para estas memorias están en pleno desarrollo aunque ya en funcionamiento como por ejemplo JFFS originalmente para NOR, evolucionado a JFFS2 para soportar además NAND o YAFFS, ya en su segunda versión, para NAND. Sin embargo, en la práctica se emplea un sistema de ficheros FAT por compatibilidad, sobre todo en las unidades de memoria extraíble.

Otra característica ha sido la resistencia térmica de algunos encapsulados de tarjetas de memoria orientadas a las cámaras digitales de gama alta. Esto permite funcionar en condiciones extremas de temperatura como desiertos o glaciares ya que el rango de temperaturas soportado abarca desde los -25 °C hasta los 85 °C.

Las aplicaciones más habituales son:

Existen varios estándares de encapsulados promocionados y fabricados por la mayoría de las multinacionales dedicadas a la producción de hardware. Los más comunes hoy en día son Secure Digital, Compact Flash y Memory Stick.

Acceso a bajo nivel

Flash, como tipo de EEPROM que es, contiene una matriz de celdas con un transistor evolucionado con dos puertas en cada intersección. Tradicionalmente sólo almacenan un bit de información. Las nuevas memorias flash, llamadas también dispositivos de celdas multi-nivel, pueden almacenar más de un bit por celda variando el número de electrones que almacenan.

Estas memorias están basadas en el transistor FAMOS (Floating Gate Avalanche-Injection Metal Oxide Semiconductor) que es, esencialmente, un transistor NMOS con un conductor (basado en un óxido metálico) adicional localizado o entre la puerta de control (CG – Control Gate) y los terminales fuente/drenador contenidos en otra puerta (FG – Floating Gate) o alrededor de la FG conteniendo los electrones que almacenan la información.

Memoria flash de tipo NOR

Cableado y estructura en silicio de la memoria flash NOR.

En las memorias flash de tipo NOR, cuando los electrones se encuentran en FG (Floating Gate), modifican (prácticamente anulan) el campo eléctrico que generaría CG (control Gate) en caso de estar activo. De esta forma, dependiendo de si la celda está a 1 ó a 0, el campo eléctrico de la celda existe o no. Entonces, cuando se lee la celda poniendo un determinado voltaje en CG, la corriente eléctrica fluye o no en función del voltaje almacenado en la celda. La presencia/ausencia de corriente se detecta e interpreta como un 1 ó un 0, reproduciendo así el dato almacenado. En los dispositivos de celda multi-nivel, se detecta la intensidad de la corriente para controlar el número de electrones almacenados en FG e interpretarlos adecuadamente.

Para programar una celda de tipo NOR (asignar un valor determinado) se permite el paso de la corriente desde el terminal fuente al terminal sumidero, entonces se coloca en CG un voltaje alto para absorber los electrones y retenerlos en el campo eléctrico que genera. Este proceso se llama hot-electrón injection. Para borrar (poner a “1”, el estado natural del transistor) el contenido de una celda, expulsar estos electrones, se emplea la técnica de Fowler-Nordheim tunnelling, un proceso de tunelado mecánico – cuántico. Esto es, aplicar un voltaje inverso bastante alto al empleado para atraer a los electrones, convirtiendo al transistor en una pistola de electrones que permite, abriendo el terminal sumidero, que los electrones abandonen el mismo. Este proceso es el que provoca el deterioro de las celdas, al aplicar sobre un conductor tan delgado un voltaje tan alto.

Es necesario destacar que las memorias flash están subdivididas en bloques (en ocasiones llamados sectores) y por lo tanto, para el borrado, se limpian bloques enteros para agilizar el proceso, ya que es la parte más lenta del proceso. Por esta razón, las memorias flash son mucho más rápidas que las EEPROM convencionales, ya que borran byte a byte. No obstante, para reescribir un dato es necesario limpiar el bloque primero para después reescribir su contenido.

Memoria flash de tipo NAND

Cableado y estructura en silicio de la memoria flash NAND.

Las memorias flash basadas en puertas lógicas NAND funcionan de forma ligeramente diferente: usan un túnel de inyección para la escritura y para el borrado un túnel de ‘soltado’. Las memorias basadas en NAND tienen, además de la evidente base en otro tipo de puertas, un costo bastante inferior, unas diez veces de más resistencia a las operaciones pero sólo permiten acceso secuencial (más orientado a dispositivos de almacenamiento masivo), frente a las memorias flash basadas en NOR que permiten lectura de acceso aleatorio. Sin embargo, han sido las NAND las que han permitido la expansión de este tipo de memoria, ya que el mecanismo de borrado es más sencillo (aunque también se borre por bloques) lo que ha proporcionado una base más rentable para la creación de dispositivos de tipo tarjeta de memoria. Las populares memorias USB o también llamadas Pendrives, utilizan memorias flash de tipo NAND.

Comparación de memorias flash tipo NOR y NAND

Para comparar estos tipos de memoria se consideran los diferentes aspectos de las memorias tradicionalmente valorados.

En resumen, los sistemas basados en NAND son más baratos pero carecen de una fiabilidad que los haga eficientes, lo que demuestra la necesidad imperiosa de un buen sistema de ficheros. Dependiendo de qué sea lo que se busque, merecerá la pena decantarse por uno u otro tipo.

Estandarización

El grupo Open NAND Flash Interface (ONFI) ha desarrollado una interfaz estandarizada a bajo nivel para chips de memoria NAND. Esto permite la interoperabilidad entre dispositivos NAND de diferentes fabricantes. El ONFI versión 1.0[2] fue lanzado el 28 de diciembre de 2006. Establece:

El grupo ONFI es apoyado por la mayoría de los fabricantes de memorias flash NAND, incluyendo Hynix, Intel, Micron Technology y Numonyxen), así como por los principales fabricantes de dispositivos que incorporan chips de memoria flash NAND.[3]

Un grupo de proveedores (incluyendo Intel, Dell, y Microsoft) formaron el grupo de trabajo NVM Express (Non-Volatile Memory Host Controller Interface). El objetivo del grupo es proporcionar software estándar e interfaces de programación hardware para los subsistemas de memoria no volátil, incluido el dispositivo "flash caché", conectado al bus PCI Express.

Sistemas de ficheros flash

Diseñar un sistema de ficheros eficiente para las memorias flash se ha convertido en una carrera vertiginosa y compleja, porque aunque ambos son tipos de memoria flash (NOR y NAND), tienen características muy diferentes entre sí a la hora de acceder a esos datos. Esto es porque un sistema de ficheros que trabaje con memorias de tipo NOR incorpora varios mecanismos innecesarios para NAND y, a su vez, NAND requiere mecanismos adicionales, innecesarios para gestionar la memoria de tipo NOR.

Un ejemplo podría ser un "recolector de basura". Esta herramienta está condicionada por el rendimiento de las funciones de borrado que, en el caso de NOR es muy lento y, además, un recolector de basura NOR requiere una complejidad relativa bastante alta y limita las opciones de diseño del sistema de ficheros. Comparándolo con los sistemas NAND, que borran mucho más rápidamente, estas limitaciones no tienen sentido.

Otra de las grandes diferencias entre estos sistemas es el uso de bloques erróneos que pueden existir en NAND pero no tienen sentido en los sistemas NOR que garantizan la integridad. El tamaño que deben manejar unos y otros sistemas también difiere sensiblemente y por lo tanto es otro factor a tener en cuenta. Se deberá diseñar estos sistemas en función de la orientación que se le quiera dar al sistema.

Los dos sistemas de ficheros que se disputan el liderazgo para la organización interna de las memorias flash son JFFS (Journaling Flash File System) y YAFFS (Yet Another Flash File System), ExFAT (tabla extendida de asignación de ficheros) es la opción de Microsoft.

Antecedentes de la memoria flash

Las memorias han evolucionado mucho desde los comienzos del mundo de la computación. Conviene recordar los tipos de memorias de semiconductores empleadas como memoria principal y unas ligeras pinceladas sobre cada una de ellas para enmarcar las memorias flash dentro de su contexto.

Organizando estos tipos de memoria conviene destacar tres categorías si las clasificamos en función de las operaciones que podemos realizar sobre ellas, es decir, memorias de sólo lectura, memorias de sobre todo lectura y memorias de lectura/escritura.

Tarjetero flash

Un tarjetero flash o lector de tarjetas de memoria es un periférico que lee o escribe en memoria flash. Actualmente, los instalados en computadoras (incluidos en una placa o mediante puerto USB), marcos digitales, lectores de DVD y otros dispositivos, suelen leer varios tipos de tarjetas.

Futuro

El futuro del mundo de la memoria flash es bastante alentador, ya que se tiende a la ubicuidad de las computadoras y electrodomésticos inteligentes e integrados y, por ello, la demanda de memorias pequeñas, baratas y flexibles seguirá en alza hasta que aparezcan nuevos sistemas que lo superen tanto en características como en costo. En apariencia, esto no parecía muy factible ni siquiera a medio plazo ya que la miniaturización y densidad de las memorias flash estaba todavía lejos de alcanzar niveles preocupantes desde el punto de vista físico. Pero con la aparición del memristor el futuro de las memorias flash comienza a opacarse.

El desarrollo de las memorias flash es, en comparación con otros tipos de memoria sorprendentemente rápido tanto en capacidad como en velocidad y prestaciones. Sin embargo, los estándares de comunicación de estas memorias, de especial forma en la comunicación con los PC es notablemente inferior, lo que puede retrasar los avances conseguidos.

La apuesta de gigantes de la informática de consumo, como AMD y Fujitsu, en formar nuevas empresas dedicadas exclusivamente a este tipo de memorias, como Spansion(en) en julio de 2003, auguran fuertes inversiones en investigación, desarrollo e innovación en un mercado que en 2005 seguía creciendo y que registró en 2004 un crecimiento asombroso hasta los 15.000 millones de dólares (después de haber superado la burbuja tecnológica del llamado "boom punto com") según el analista de la industria Gartner, que avala todas estas ideas.

Es curioso que esta nueva empresa, concretamente, esté dando la vuelta a la tortilla respecto a las velocidades con una técnica tan sencilla en la forma como compleja en el fondo de combinar los dos tipos de tecnologías reinantes en el mundo de las memorias flash en tan poco tiempo. Sin duda se están invirtiendo muchos esfuerzos de todo tipo en este punto.

Sin embargo, la memoria flash se seguirá especializando fuertemente, aprovechando las características de cada tipo de memoria para funciones concretas. Supongamos una Arquitectura Harvard para un pequeño dispositivo como un PDA; la memoria de instrucciones estaría compuesta por una memoria de tipo ORNAND (empleando la tecnología MirrorBit de segunda generación) dedicada a los programas del sistema, esto ofrecería velocidades sostenidas de hasta 150 MB/s de lectura en modo ráfaga según la compañía con un costo energético ínfimo y que implementa una seguridad por hardware realmente avanzada; para la memoria de datos podríamos emplear sistemas basados en puertas NAND de alta capacidad a un precio realmente asequible. Sólo quedaría reducir el consumo de los potentes procesadores para PC actuales y dispondríamos de un sistema de muy reducidas dimensiones con unas prestaciones que hoy en día sería la envidia de la mayoría de las computadoras de sobremesa. Y no queda mucho tiempo hasta que estos sistemas tomen, con un esfuerzo redoblado, las calles.

Cualquier dispositivo con datos críticos empleará las tecnologías basadas en NOR u ORNAND si tenemos en cuenta que un fallo puede hacer inservible un terminal de telefonía móvil o un sistema médico por llegar a un caso extremo. Sin embargo, la electrónica de consumo personal seguirá apostando por las memorias basadas en NAND por su inmensamente reducido costo y gran capacidad, como los reproductores portátiles de MP3 o ya, incluso, reproductores de DVD portátiles. La reducción del voltaje empleado (actualmente en 1,8 V la más reducida), además de un menor consumo, permitirá alargar la vida útil de estos dispositivos sensiblemente. Con todo, los nuevos retos serán los problemas que sufren hoy en día los procesadores por su miniaturización y altas frecuencias de reloj de los microprocesadores.

Los sistemas de ficheros para memorias flash, con proyectos disponibles mediante CVS (Concurrent Version System) y código abierto permiten un desarrollo realmente rápido, como es el caso de YAFFS2, que, incluso, ha conseguido varios patrocinadores y hay empresas realmente interesadas en un proyecto de esta envergadura.

La integración con sistemas inalámbricos permitirá unas condiciones propicias para una mayor integración y ubicuidad de los dispositivos digitales, convirtiendo el mundo que nos rodea en el sueño de muchos desde la década de 1980. Pero no sólo eso, la Agencia Espacial Brasileña, por citar una agencia espacial, ya se ha interesado oficialmente en este tipo de memorias para integrarla en sus diseños; la NASA ya lo hizo y demostró en Marte su funcionamiento en el Spirit (rover de la NASA, gemelo de Opportunity), donde se almacenaban incorrectamente las órdenes como bien se puede recordar. Esto sólo es el principio. Y más cerca de lo que creemos. Intel asegura que el 90% de los PC, cerca del 90% de los móviles, el 50% de los módems, etc., en 1997 ya contaban con este tipo de memorias.

Memoria flash como sustituto del disco duro

En la actualidad TDK está fabricando discos duros con memorias flash NAND de 32 Gb con un tamaño similar al de un disco duro de 2½ pulgadas, similares a los discos duros de los portátiles con una velocidad de 33,3 Mb/s. El problema de este disco duro es que, al contrario de los discos duros convencionales, tiene un número limitado de accesos. Samsung también ha desarrollado memorias NAND de hasta 32 Gb.

Apple presentó el 20 de octubre de 2010 una nueva versión de la computadora portátil MacBook Air en el evento denominado ‘De vuelta al Mac’ (Back to the Mac), en su sede general de Cupertino, en California (Estados Unidos). Una de las características más resaltantes de este nuevo equipo es que no tiene disco duro, sino una memoria flash, lo que la hace una máquina más rápida y ligera.

Según David Cuen, un especialista consultado por la BBC Mundo, “la memoria flash es una apuesta interesante pero arriesgada. La pregunta es: ¿está el mercado preparado para deshacerse de los discos duros? Apple parece pensar que sí”.[4]

La expansión de la memoria flash es prácticamente infinita. El 7 de enero de 2013, Kingston lanzó una memoria flash (DataTraveler HyperX Predator 3.0) con una capacidad máxima de 1 TB.[5]

Memoria flash como RAM

A partir de 2012, hay intentos de utilizar la memoria flash como memoria principal de la computadora, DRAM. De momento es más lenta que la DRAM convencional, pero utiliza hasta diez veces menos energía, y también es significativamente más barata.[6] La fuente muestra una foto del dispositivo que se parece a una tarjeta PCI-Express, soportada por el driver correspondiente.

De manera similar el sistema operativo Windows desde Windows Vista ofrece la prestación ReadyBoost para usar las memorias USB y tarjetas de memoria como caché para ayudar a la computadora a ser más rápida.

Cuidados

Referencias

  1. Fulford, Benjamin (24 de junio de 2002), Unsung hero, consultado el 21 de septiembre de 2015
  2. «Open NAND Flash Interface Specification» (PDF). 28 de diciembre de 2006. Archivado desde el original el 22 de noviembre de 2015. Consultado el 31 de julio de 2010.
  3. Lista de los miembros ONFI http://onfi.org/membership/.
  4. Capacidad de los MacBook Air,
  5. Kingston, presentación de la primera memoria de 1 TB.
  6. Douglas Perry (2012) Princeton: Replacing RAM with Flash Can Save Massive Power.

Véase también

Enlaces externos

This article is issued from Wikipedia - version of the Wednesday, January 20, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.