Polígono regular

En geometría, se denomina polígono regular a un polígono cuyos lados y ángulos interiores son congruentes entre sí. Los polígonos regulares de tres y cuatro lados se llaman triángulo equilátero y cuadrado, respectivamente. Para polígonos de más lados, se añade el término regular (pentágono regular, hexágono regular, octágono regular, etc). Solo algunos polígonos regulares pueden ser construidos con regla y compás.[1]

Elementos de un polígono regular

Propiedades de un polígono regular

Ángulos de un polígono regular

Central

 \alpha = \frac{360^\circ}{n} \; en grados sexagesimales
 \alpha = \frac{2\pi}{n} \; en radianes

Interior

 \beta = 180^\circ \cdot \frac{(n-2)}{n} \; en grados sexagesimales
 \beta = \pi \cdot \frac{(n-2)}{n} \; en radianes
 \sum \beta = 180^\circ \cdot {(n-2)} \; en grados sexagesimales
 \sum \beta = \pi \cdot {(n-2)} \; en radianes

Exterior

 \gamma = \frac{360^\circ}{n} \; en grados sexagesimales
 \gamma = \frac{2 \pi}{n} \; en radianes
 \sum \gamma = 360^\circ \; en grados sexagesimales
 \sum \gamma = 2 \pi \; en radianes


Galería de polígonos regulares

Observación: A medida que crece el número de lados de un polígono regular, se asemeja más a una circunferencia.

Área de un polígono regular

Existen diversas fórmulas para calcular el área de un polígono regular, dependiendo de los elementos conocidos.

En función del perímetro y la apotema

El área de un polígono regular, conociendo el perímetro y la apotema es:

 A = \frac {P \cdot a}{2}
Demostración
  • Partiendo del triángulo que tiene por base un lado L, del polígono y altura su apotema a , el área de este triángulo, es:
 A_t = \frac{L \cdot a}{2} \;
  • Un polígono de n lados, tiene n de estos triángulos, por lo tanto el área del polígono será:
 A_p = \frac{L \cdot a}{2} \cdot n \;
  • Sabiendo que la longitud de un lado L, por el número n de lados, es el perímetro P, tenemos:
 A_p = \frac{P \cdot a}{2} \;

En función del número de lados y la apotema

Sabiendo que:


   A_p =
   \frac {L \cdot n \cdot a} {2}

Además  \delta = \frac {\pi} {n} \ , ya que es la mitad de un ángulo central (esto en radianes).

Observando la imagen, es posible deducir que:


   L =
   2 \cdot a \cdot \tan
   \left (
      \frac {\pi} {n}
   \right )

Sustituyendo el lado:


   A_p =
   \frac
      {
         \left (
            2 \cdot a \cdot \tan
            \left (
               \frac {\pi} {n}
            \right )
         \right )
         \cdot n \cdot a
      }
      {2}

Finalmente:


   A_p =
   a^2 \cdot n \cdot \tan
   \left (
      \frac {\pi} {n}
   \right )

Con esta fórmula se puede averiguar el área con el número de lados y la apotema, sin necesidad de recurrir al perímetro.

En función del número de lados y el radio

Un polígono queda perfectamente definido por su número de lados n, y el radio r, por tanto podemos determinar cual es su área, a la vista de la figura, tenemos que:

 L = 2 r \sin({\delta}) \;
 a = r \cos({\delta}) \;

donde el ángulo central es:

 \alpha = 2 \delta = \frac{2\pi}{n} \;

sabiendo que el área de un polígono es:

 A_p = \frac{L \cdot n \cdot a}{2} \;

y sustituyendo el valor del lado y la apotema calculados antes, tenemos:

 A_p = \frac{2 r \sin({\delta})  \cdot n \cdot r \cos({\delta})}{2} \;

ordenando tenemos:

 A_p = \frac{n r^2 \cdot 2 \sin({\delta}) \cos({\delta})}{2} \;

sabiendo que:

2 \sin({\delta}) \cos({\delta}) = \sin({2 \delta}) \;

resulta:

 A_p = \frac{n r^2 \sin({\alpha})}{2} \;

o lo que es lo mismo:

 A_p = \frac{n r^2 \sin({\frac{2\pi}{n}})}{2} \;

Con esta expresión podemos calcular el área del polígono, conociendo solamente el número de lados y su radio, lo que resulta útil en muchos casos.

En función de la longitud y el número de lados

Y si queremos expresar el área en función del lado, podemos calcularlo de la siguiente manera:


   A_p =
   n \cdot \frac{L \cdot a}{2}

Sea  \varphi el ángulo formado por el Lado "L" y el radio "r":


   \varphi =
   \frac{\pi-\alpha}{2} \ =
   \frac{\pi-\frac{2\pi}{n}}{2} \ =
   \frac{\pi}{2} \; \frac{(n-2)}{n}

El valor de la apotema en función del lado será, por la definición de la tangente:


   \tan \varphi =
   \frac{a}{\frac{L}{2}} =
   \frac{2a}{L}

Despejando la apotema tenemos:


   a = \frac{L \cdot \tan \varphi}{2}

Sustituimos la apotema por su valor:


   \left .
      \begin{array}{l}
         A_p = n \cdot \cfrac{L \cdot a}{2}    \\
                                               \\
         a = \cfrac{L \cdot \tan \varphi}{2}   \\
                                               \\
         \varphi = \cfrac{\pi}{2} \; \cfrac{(n-2)}{n}
      \end{array}
   \right \}
   \quad \longrightarrow \quad
   A_p =
   n \cdot \cfrac{L^2}{4} \cdot
   \tan
   \left (
      \cfrac{\pi}{2} \; \cfrac{(n-2)}{n}
   \right )

Se puede ver en el dibujo que  tan(\delta) = \frac{1}{tan(\varphi)} y la fórmula puede escribirse también como A_p = \frac{n \cdot L^2}{4 \cdot \tan\left( \frac{180^{o}}{n}\right)} .

Con lo que conociendo el número de lados del polígono regular y la longitud del lado podemos calcular su superficie.

Diagonales de un polígono regular

Número de diagonales

Para determinar el número de diagonales Nd, de un polígono de n vértices realizaremos el siguiente razonamiento:

Según el razonamiento tendremos que:

 N_d = \frac{n (n-3)}{2}

Longitud de la diagonal más pequeña

La diagonal más pequeña de un polígono regular es la que une dos vértices alternos, para determinar su longitud, partimos del ángulos central y del radio, el radio que pasa por el vértice intermedio, corta a la diagonal en el punto A, este radio y la diagonal son perpendiculares en A.

Esto es el triángulo VAC es rectángulo en A, por tanto:

 \sin({\alpha}) = \frac{\frac{d}{2}}{r}

que resulta:

 \sin({\alpha}) = \frac{d}{2r}

de donde deducimos que:

 d = 2r \sin({\alpha}) \,

Sabiendo el valor del ángulo central:

 d = 2r \sin \left ({\frac{2\pi}{n}}\right )

La diagonal más pequeña de un polígono regular, solo depende del radio y del número de lados, siendo tanto mayor cuanto mayor sea el radio y disminuyendo de longitud cuando aumenta el número de lados del polígono.

Véase también

Referencias

Bibliografía

  1. Echegaray, José (2001). Geometría: ángulos, polígonos y circunferencias (1 edición). Editorial Bruño. p. 32. ISBN 978-84-216-4219-1. 
  2. Equipo: Rosalía de Castro (2000). Geometría, polígonos, circunferencia y círculo (1 edición). Editorial Acueducto, S.L. p. 32. ISBN 978-84-95523-32-7.  |coautores= requiere |autor= (ayuda)
  3. Geometría, polígonos, circunferencia y círculo, Educación Primaria (1 edición). Editorial Escudo, S.L. 1997. p. 32. ISBN 978-84-89833-36-4. 

Enlaces externos

This article is issued from Wikipedia - version of the Friday, February 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.