Roca ígnea

Rocas volcánicas en Norteamérica.
Rocas plutónicas en Norteamérica.

Las rocas ígneas (del latín igneus "relacionado al fuego", de ignis "fuego") se forman cuando el magma (roca fundida) se enfría y se solidifica. Si el enfriamiento se produce lentamente bajo la superficie se forman rocas con cristales grandes denominadas rocas plutónicas o intrusivas, mientras que si el enfriamiento se produce rápidamente sobre la superficie, por ejemplo, tras una erupción volcánica, se forman rocas con cristales invisibles conocidas como rocas volcánicas o extrusivas. La mayor parte de los 700 tipos de rocas ígneas que se han descrito se han formado bajo la superficie de la corteza terrestre. Ejemplos de rocas ígneas son: la diorita, la riolita, el pórfido, el gabro, el basalto y el granito.

Importancia geológica

Las rocas ígneas componen, aproximadamente, el noventa y cinco por ciento de la parte superior de la corteza terrestre, pero quedan ocultas por una capa relativamente fina pero extensa de rocas sedimentarias y metamórficas.

Las rocas ígneas son geológicamente importantes porque:

Rocas ígneas según su origen

Según cómo y dónde se enfría el magma se distinguen dos grandes tipos de rocas ígneas, las plutónicas o intrusivas y las volcánicas o extrusivas.[1]

Rocas plutónicas o intrusivas

Granito, la roca plutónica más común.

Las rocas plutónicas o intrusivas se forman a partir de magma solidificado en grandes masas en el interior de la corteza terrestre. El magma, rodeado de rocas preexistentes (conocidas como rocas caja), se enfría lentamente, lo que permite que los minerales formen cristales grandes, visibles a simple vista, por lo que son rocas de "grano grueso". Tal es el caso del granito o el pórfido.

Las intrusiones magmáticas a partir de las cuales se forman las rocas plutónicas se denominan plutones, como por ejemplo los batolitos, los lacolitos, los sills y los diques.

Las rocas plutónicas solo son visibles cuando la corteza asciende y la erosión elimina las rocas que cubren la intrusión. Cuando la masa de rocas queda expuesta se denomina afloramiento. El corazón de las principales cordilleras está formado por rocas plutónicas que cuando afloran, pueden recubrir enormes áreas de la superficie terrestre.

Rocas volcánicas o extrusivas

Basalto (roca volcánica); las líneas claras muestran la dirección del flujo de lava.

Las rocas volcánicas o extrusivas se forman por la solidificación del magma (lava) en la superficie de la corteza terrestre, usualmente tras una erupción volcánica. Dado que el enfriamiento es mucho más rápido que en el caso de las rocas intrusivas, los iones de los minerales no pueden organizarse en cristales grandes, por lo que las rocas volcánicas son de grano fino (cristales invisibles a ojo desnudo), como el basalto, o completamente amorfas (una textura similar al vidrio), como la obsidiana. En muchas rocas volcánicas se pueden observar los huecos dejados por las burbujas de gas que escapan durante la solidificación del magma.

El volumen de rocas extrusivas arrojadas por los volcanes anualmente depende del tipo de actividad tectónica:[2]

, como la cordillera de los Andes o los arcos insulares del Pacífico.

Clasificación: textura y composición

Conjunto de Rocas Igneas.
Obsidiana (textura vítrea).
Riolita (textura afanítica).
Brecha volcánica (textura piroclástica).

La clasificación de los muchos tipos diferentes de rocas ígneas, puede proveernos de importante información, sobre las condiciones bajo las cuales se formaron. Dos importantes variables, usadas para la clasificación de rocas ígneas, son el tamaño de partícula, que depende de su historia de enfriamiento, y la composición mineral de la roca. Feldespatos, cuarzo, feldespatoides, olivinas, piroxenos, anfíboles, y micas, son minerales importantes que forman parte de casi todas las rocas ígneas, y son básicos en la clasificación de estas rocas. Los otros minerales presentes, se denominan minerales accesorios. Son muy raras las rocas ígneas con otros minerales esenciales.

Las rocas ígneas se clasifican de acuerdo con su origen, textura, mineralogía, composición química y la geometría del cuerpo ígneo.

Textura

La textura de una roca ígnea se usa para describir el aspecto general de la misma en función del tamaño, forma y ordenamiento de los cristales que la componen. En un esquema simplificado se pueden distinguir hasta seis texturas ígneas:[3]

Las rocas plutónicas acostumbran a tener texturas faneríticas, porfídicas y pegmatíticas, mientras que las rocas volcánicas son de textura vítrea, afanítica o piroclástica.

Composición química

Aproximación a la mineralogía de las rocas ígneas en función de su contenido en sílice.

Las rocas ígneas están compuestas fundamentalmente por silicatos (SiO44-); estos dos elementos, más los iones aluminio, calcio, sodio, potasio, magnesio y hierro constituyen aproximadamente el 98 % en peso de los magmas. Cuando éstos se enfrían y solidifican, dichos elementos se combinan para formar dos grandes grupos de silicatos:[3]

Las rocas ígneas pueden clasificarse, en función de la proporción de silicatos claros y oscuros, como sigue:

La siguiente tabla, es una subdivisión simple de rocas ígneas, de acuerdo a su composición y origen:

Composición
Origen Félsicas Andesíticas Máficas Ultramáficas
Intrusivo Granito Diorita Gabro Peridotita
Extrusivo Riolita Andesita Basalto Komatita

Clasificación química, también se extiende para diferenciar rocas, que son químicamente similares, de acuerdo al diagrama TAS, por ejemplo:

Origen del magma

El magma se origina de la fusión parcial de rocas preexistentes dentro de la corteza terrestre y el manto superior a profundidades que pueden superar los 250 km.[3]

La corteza de tierra alcanza un promedio de cerca de 35 kilómetros de grueso bajo los continentes, pero alcanza solo unos 7-10 kilómetros debajo de los océanos. La corteza continental está compuesta primariamente de rocas sedimentarias que descansan sobre una base cristalina formada de una gran variedad de rocas metamórficas e ígneas, incluyendo granulita y granito. La corteza oceánica está compuesta principalmente por basalto, y gabro. Ambas cortezas, continental y oceánica, descansan sobre la peridotita del manto.

Las rocas pueden derretirse en respuesta a una disminución en la presión, a un cambio en la composición (como una adición de agua) o a un aumento en temperatura. Otros mecanismos, como la fusión por el impacto de un meteorito son mucho menos importantes hoy, durante el crecimiento de la Tierra los innumerables impactos llevaron a la fusión de varios cientos de los kilómetros más externos de nuestra Tierra temprana, cuando fue probablemente un océano del magma. Se ha propuesto que impactos de grandes meteoritos en los últimos cientos millones de años como un mecanismo responsable del amplio magmatismo basáltico de varias grandes provincias ígneas.

Temperatura

El aumento de temperatura es el factor típico que conduce a la fusión de las rocas y a la formación del magma. Puede ocurrir cuando un cuerpo ígneo caliente asciende e intruye en la corteza cuyas rocas se funden. Esto suele ocurrir en los límites convergentes de las placas tectónicas como por ejemplo la colisión de la India con la placa Euroasiática.[4]

Se cree que el granito y la riolita son rocas ígneas que se forman por fusión de la corteza continental debido al aumento de la temperatura. El aumento de la temperatura también puede contribuir a la fusión de la litósfera que se hunde en una zona de subducción.

Descompresión

La fusión por descompresión ocurre debido a una disminución de la presión.[5] La temperatura de fusión de la mayoría de las rocas se incrementa, en ausencia de agua, con el aumento de la presión, y ésta aumenta con la profundidad. Así, una roca profunda muy caliente puede seguir en estado sólido debido a la enorme presión de confinamiento a la que está sometida; si la roca asciende y su presión de confinamiento disminuye más rápidamente que su temperatura (las rocas son malas conductoras del calor), se fundirá. Este proceso de fusión, en el movimiento ascendente del manto sólido mediante corrientes de convección, es crítico en la dinámica de la Tierra. La fusión por descompresión crea nueva corteza oceánica en las dorsales oceánicas, origina plumas de manto que han dado lugar a cadenas de islas como Hawái. La fusión por descompresión es la explicación más común inundaciones basálticas (trapp) y las mesetas oceánicas, dos tipos de grandes provincias ígneas.

Efectos del agua y el dióxido de carbono

Otro factor importante que afecta a la temperatura de fusión de las rocas es su contenido en agua y otras sustancias volátiles, que hacen que la roca se funda a temperaturas inferiores a una presión dada. Por ejemplo, en una profundidad de unos 100 kilómetros, la peridotita comienza a fundirse cerca de los 800 °C, en presencia de agua, pero en su ausencia funde a unos 1.500 °C.[6] En las zonas de subducción, conforme una placa oceánica se hunde, el aumento de temperatura y presión expulsan el agua de las rocas de la corteza subducida lo que causa la fusión del manto suprayacente, originándose magmas basálticos y andesíticos. Estos magmas y otros derivados de ellos fueron los que edificaron los arcos de islas volcánicas en todo el Cinturón de fuego del Pacífico.

La adición de dióxido de carbono (CO2) es una causa mucho menos importante en la formación de magmas, aunque algunos de ellos se cree que se forman en regiones del manto donde predomina el CO2 sobre el agua. A una profundidad de 70 km el dióxido de carbono hace descender el punto de fusión de la peridotita en 200 °C; a mayores profundidades el efecto puede ser superior; se calcula que a 200 km se reduce entre 450 °C y 600 °C. Los magmas que originan rocas como la nefelinita, la carbonatita y la kimberlita, puede que se generen por el influjo de dióxido de carbono en el manto a profundidades mayores de 70 kilómetros.[7]

Véase también

Referencias

  1. R. W. Le Maitre (editor), A. Streckeisen, B. Zanettin, M. J. Le Bas, B. Bonin, P. Bateman, G. Bellieni, A. Dudek, S. Efremova, J. Keller, J. Lamere, P. A. Sabine, R. Schmid, H. Sorensen, and A. R. Woolley, Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks. Cambridge University Press, 2002. ISBN 0-521-66215-X
  2. Fisher, R. V. & Schmincke H.-U., (1984) Pyroclastic Rocks, Berlin, Springer-Verlag
  3. 1 2 3 Tarbuck, E. J. & Lutgens, F. K. 2005. Ciencias de la Tierra, 8ª edición. Pearson Educación S. A., Madrid. ISBN 84-205-4400-0
  4. M. J. Unsworth et al. (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438: 78-81
  5. Geoff C. Brown, C. J. Hawkesworth, R. C. L. Wilson (1992). Understanding the Earth (2nd edición). Cambridge University Press. p. 93. ISBN 0521427401.
  6. T. L. Grove, N. Chatterjee, S. W. Parman, and E. Medard, 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249:74-89.
  7. R. Dasgupta & M. M. Hirschmann (2007). Effect of variable carbonate concentration on the solidus of mantle peridotite. American Mineralogist, 92: 370-379

Enlaces externos

This article is issued from Wikipedia - version of the Thursday, February 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.