Simetría

El Hombre de Vitruvio, de Leonardo da Vinci (ca. 1487), es una representación muy citada de la simetría del cuerpo humano, y por extensión del mundo.

La simetría (del griego σύν "con" y μέτρον "medida") es un rasgo característico de formas geométricas, sistemas, ecuaciones y otros objetos materiales, o entidades abstractas, relacionada con su invariancia bajo ciertas transformaciones, movimientos o intercambios. En condiciones formales, un objeto es simétrico en lo que concierne a una operación matemática dada si el resultado de aplicar esa operación o transformación al objeto, el resultado es un objeto indistinguible en su aspecto del objeto original. Dos objetos son simétricos uno al otro en lo que concierne a un grupo dado de operaciones si uno es obtenido de otro por algunas operaciones (y viceversa). En la geometría 2D las clases principales de simetría de interés son las que conciernen a las isometrías de un espacio euclídeo: traslaciones, rotaciones, reflexiones y reflexiones que se deslizan. Además de simetrías geométricas existen simetrías abstractas relacionadas con operaciones abstractas como la permutación de partes de un objeto.

La simetría también se encuentra en organismos vivos.

Simetría en geometría

Grupo de simetría de la esfera.

Cuando hablamos de objetos físicos o elementos geométricos el concepto de simetría está asociado a transformaciones geométricas tales como las rotaciones, las reflexiones o las traslaciones. Dos simetrías sencillas son la simetría axial y la simetría central. Así se dice que un objeto presenta:

Algunos tipos de simetría que combinan dos o más de los anteriores tipos son:

Simetría en dibujo

Alegoría a la simetría de Valeriano Salvatierra en el Museo del Prado, (Madrid)

En dibujo existen cinco simetrías importantes que son simetría de traslación, rotación, ampliación, bilateral, abatimiento.

Simetría en física

En física el concepto de simetría puede formularse en una forma no geométrica. Si K es un conjunto de objetos matemáticos del mismo tipo (funciones, formas geométricas, ecuaciones, ...) que representan algunas propiedades de un sistema físico y G es un grupo de transformaciones que actúa sobre K de tal manera que:

g (\in G): K \to K

Se dice que un elemento de k0 presenta simetría si:[1]

x+32.23g-n12+2/5

Así por ejemplo varias leyes de conservación de la física son consecuencia de la existencia de simetrías abstractas del lagrangiano, tal como muestra el teorema de Noether. En ese caso K representaría el conjunto de lagrangianos admisibles, k0 el lagrangiano del sistema bajo estudio y G puede representar traslaciones espaciales (conservación del momento lineal), traslaciones temporales (conservación de la energía), rotaciones (conservación del momento angular) u otro tipo de simetrías abstractas (conservación de la carga eléctrica, el número leptónico, la paridad, etc.)

Estos dos ejemplos anteriores son casos del teorema de Noether, un resultado general que establece que si existe un grupo uniparamétrico de simetría G para el lagrangiano tal que:

\forall \phi_\lambda\in G: L(\phi_\lambda(\mathbf{q}),\phi_\lambda(\dot\mathbf{q}),t) = 
L(\mathbf{q},\dot\mathbf{q},t)

Entonces la cantidad escalar:

\left \langle \left . \frac{d\phi_\lambda}{d\lambda}\right \vert_{\lambda=0}, \frac{dL}{d\dot\mathbf{q}}\right\rangle = v_1p_1 + ... + v_Np_N

Siendo v el campo vectorial que general el grupo uniparamétrico de transformaciones de simetría, y pi los momentos conjugados de las coordenadas generalizadas de posición.

Simetría en química

En química la simetría geométrica de las moléculas es importante, particularmente en química orgánica. Además propiedades como su momento dipolar y las transiciones espectroscópicas permitidas (basadas en reglas de selección como la regla de Laporte) pueden predecirse o ser explicadas a partir de la simetría de la molécula. Las simetrías que aparecen en química están asociadas a grupos finitos de isometrías, en concreto son grupos puntuales de transformaciones de isometría.

Simetría en biología

Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).

Simetría en biología es la equilibrada distribución en el cuerpo de los organismos de aquellas partes que aparecen duplicadas. Los planes corporales de la mayoría de organismos pluricelulares exhiben alguna forma de simetría, bien sea simetría radial o simetría bilateral. Una pequeña minoría no presenta ningún tipo de simetría (son asimétricos).

Simetría radial

La simetría radial es la simetría definida por un eje heteropolar (distinto en sus dos extremos). El extremo que contiene la boca se llama lado oral, y su opuesto lado aboral o abactinal. Sobre este eje, se establecen planos principales de simetría; dos perpendiculares que definen las posiciones per-radiales. Las estructuras en otros planos (bisectrices de los per-radiales) quedan en posiciones inter-radiales. La zona entre los per-radiales y los inter-radiales es la zona ad-radial

Simetría bilateral


La mayoría de especies animales tiene simetría bilateral y pertenece por tanto al grupo Bilateria, aunque hay especies como los erizos y las estrellas de mar que presentan simetría radial secundaria (las fases de desarrollo tempranas y las larvas poseen simetría bilateral que posteriormente se pierde en el adulto). La simetría bilateral permite la definición de un eje corporal en la dirección del movimiento, lo que favorece la formación de un sistema nervioso centralizado y la cefalización.

Simetría en música

En música clásica, existen composiciones en las que podemos encontrar distribuciones de las notas generadas mediante simetría bilateral, traslación o giros de media vuelta. Algunos ejemplos de composiciones, son: el Preludio de Johann Sebastian Bach, la Sonata en G mayor de Domenico Scarlatti, Lotosblume de Robert Schumann, o Die Meiestersinger de Richard Wagner.

Simetría en alimentación de AC

En el contexto de la electrónica de radiofrecuencia, se habla de una alimentación simétrica de AC cuando ninguno de los conductores está a la masa. Cuando uno de los conductores está a la masa y el otro experimenta las variaciones de tensión, se dice que la alimentación es asimétrica.

Existen importantes aplicaciones tecnológicas basadas en la alimentación simétrica, ya que la alimentación simétrica tiene la gran ventaja de que la pérdida de potencia en la línea de transmisión es un orden de magnitud menor que la alimentación asimétrica por cable coaxial.

La alimentación simétrica es por lo tanto la alimentación preferida en la operación QRP y en el modo EME, modos donde cada dB de ganancia cuenta.

Véase también

Simetría en estadística

Simetría en juegos y puzles

Simetría en literatura

Simetría moral

Simetría en física

Otros

Referencias

  1. Wald, 1984, p. 441-444.

Bibliografía

Enlaces externos

This article is issued from Wikipedia - version of the Sunday, February 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.