Sistema octal

El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7.

En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.

Métodos de conversión

Decimal

Para convertir un número en base decimal a base octal se divide dicho número entre 8, dejando el residuo y dividiendo el cociente sucesivamente por 8 hasta obtener residuo 0, luego los restos de las divisiones leídos en orden inverso indican el número en octal.

Para pasar de base 8 a base decimal, solo hay que multiplicar cada cifra por 8 elevado a la posición de la cifra, y sumar el resultado.

Binario

Es más fácil pasar de binario a octal, porque solo hay que agrupar de 3 en 3 los dígitos binarios, así, el número 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 / 001 / 010, después obtenemos el número en decimal de cada uno de los números en binario obtenidos: 1=1, 001=1 y 010=2. De modo que el número decimal 74 en octal es 112.

Sistema de numeración octal

El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal.

El teorema fundamental aplicado al sistema octal sería el siguiente:

\begin{matrix} \!\!\!\!\!\!N=d_n \ldots d_1 d_0,  d_{-1} \ldots  d_{-k}& =&\\& \\
d_n\cdot 8^n+\ldots+d_1\cdot 8^1+d_0\cdot 8^0 , +d_{-1}\cdot 8^{-1}+\ldots+d_{-k}\cdot8^{-k}& =&
\end{matrix}



N=\sum_{i=-k}^n d_i\cdot 8^i

Como el sistema de numeración octal usa la notación posicional entonces para el número 3452,32 tenemos que: 2*80 + 5*81 + 4*82 + 3*83 + 3*8-1 + 2*8-2 = 2 + 40 + 4*64 + 3*512 + 3*0,125 + 2*0,015625 = 2 + 40 + 256 + 1536 + 0,375 + 0,03125 = 1834 + 0,40625d

Entonces, 3452,32q = 1834,40625d

El sub índice "q" indica número octal, se usa la letra q para evitar confusión entre la letra 'o' y el número 0. En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.

Es utilizado como una forma abreviada de representar números binarios que emplean caracteres de seis bits. Cada tres bits (medio carácter) es convertido en un único dígito octal (del griego oktō 'ocho') Esto es muy importante por eso.

Fracciones

La numeración octal es tan buena como la binaria y la hexadecimal para operar con fracciones, puesto que el único factor primo para sus bases es 2. Todas las fracciones que tengan un denominador distinto de una potencia de 2 tendrán un desarrollo octal periódico.

Fracción Octal Resultado en octal
1/2 1/2 0,4
1/3 1/3 0,25252525 periódico
1/4 1/4 0,2
1/5 1/5 0,14631463 periódico
1/6 1/6 0,125252525 periódico
1/7 1/7 0,111111 periódico
1/8 1/10 0,1
1/9 1/11 0,07070707 periódico
1/10 1/12 0,063146314 periódico

Tabla de conversión entre decimal, binario, hexadecimal y octal

DecimalBinarioHexadecimaloctal
00000000
10000111
20001022
30001133
40010044
50010155
60011066
70011177
801000810
901001911
1001010A12
1101011B13
1201100C14
1301101D15
1401110E16
1501111F17
16100001020
17100011121
18100101222
19100111323
20101001424
21101011525
22101101626
23101111727
24110001830
25110011931
26110101A32
27110111B33
28111001C34
29111011D35
30111101E36
31111111F37
321000002040
331000012141

Véase también

Enlaces externos

This article is issued from Wikipedia - version of the Friday, November 06, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.